Numerical experiments, Tips, Tricks and Gotchas
Effective smoothing length
Simple Moving Average and Exponentially Weighted Average
Both Simple Moving Average (MA) [
1]
and Exponentially Weighted Moving Average (EWMA) [
2]
can be described as a ratio of the weighted sum and the norm (see [
3]
for details):
\begin{equation}
m_{k}=\frac{S_{k}}{N_{k}}
\end{equation}
Here
\begin{equation}
S_{k} = \sum_{i=1}^{k} w_{k,i} x_{i} \label{eq:sk}
\end{equation}
\begin{equation}
N_{k} = \sum_{i=1}^{k} w_{k,i} \label{eq:nk}
\end{equation}
and
\begin{equation}
w_{k,i} = 1 \mbox{ for MA} \label{eq:wma}\\
\end{equation}
\begin{equation}
w_{k,i} = \lambda^{k-i} \mbox{for EWMA} \label{eq:wewma}
\end{equation}
For the case of EWMA $k \to \infty $.
Effective smoothing length
The smoothing length is well defined in the simple average. It is
the norm $N_{k}$ (\ref{eq:nk}).
\begin{equation}
N_{k} = k
\end{equation}
which is the number of terms in (\ref{eq:sk}).
The norm with the weights (\ref{eq:wewma}) is a natural
generalization of the smoothing length for the exponential average:
\begin{equation}
N_{k}= 1+\lambda+\lambda^{2}+\cdots+\lambda^{k-1}=
\frac{1-\lambda^{k}}{1-\lambda}=\frac{1-\lambda^{k}}{\alpha}\label{eq:norm}
\end{equation}
This norm accounts for 100 % of all weights. At sufficiently large
$k$
\begin{equation}
\frac{1}{N_{k}}\rightarrow\frac{1}{N_{\infty}}=\alpha\label{eq:norminf}
\end{equation}
While definition (\ref{eq:norm}) is intuitive, historically the smoothing period, $P$,
for exponential smoothing (\ref{eq:wewma})
is introduced as [
2]:
\begin{equation}
\alpha=\frac{2}{P+1}
\end{equation}
These two definitions are related as
\begin{equation}
N_{k}=\frac{P+1}{2}\left[1-\left(\frac{P-1}{P+1}\right)^{k}\right]\approx\frac{P+1}{2}
\end{equation}
In RiskMetrics [
4]
the effective averaging length $L$ is defined as
\begin{equation}
\frac{N_{L}}{N_{\infty}}=0.999=1-\epsilon
\end{equation}
Therefore
\begin{eqnarray*}
1-\lambda^{L} & = & 1-\epsilon\\
\lambda^{L} & = & \epsilon
\end{eqnarray*}
or
\begin{equation}
\lambda=\epsilon^{\frac{1}{L}}
\end{equation}
This length is related to the natural length as
\begin{equation}
L=\frac{ln(\epsilon)}{ln(\lambda)} = \frac{ln(\epsilon)}{ln(1-\frac{1}{N_{\infty}})} \approx 6.9\; N_{\infty}
\end{equation}
In particular, for $\lambda=0.94$ [4],
the above definitions give the following values: $L=112$, $P=32$, $N_{\infty}=17$ .
A couple of specific cases are also worth mentioning.
For $N_{\infty}=P=1$ $\lambda=0$ - no averaging; and for $L=1$ $\lambda=0.001$.
The values of all definitions for selected $\lambda$ are collected in the table below
[3].
$\lambda$ |
L |
P |
$N_{\infty}$ |
Comment |
0 |
0 |
1 |
1 |
No averaging |
0.001 |
1 |
1.002 |
1.001 |
|
0.5 |
10 |
3 |
2 |
|
0.75 |
24 |
7 |
4 |
|
0.875 |
52 |
15 |
8 |
|
0.94 |
112 |
33 |
17 |
RiskMetrix |
References
- Wikipedia: Moving average.
- Wikipedia: Exponential smoothing.
-
N.V.Shokhirev, Moving Average and Exponential Smoothing.,
www.numericalexpert.com, 2012
-
Jorge Mina and Jerry Yi Xiao,
Return to RiskMetrics: The Evolution of a Standard, RiskMetrics, 2001.