Histogram function
Nikolai Shokhirev
July 15, 2012
Introduction
The histogram functions [
1]
are widely used in probability density function (PDF) estimation [
2].
Definitions
A histogram is a piecewise constant function:
\begin{equation}
f\left(x,\vec{p}\right)=\sum_{m=0}^{M-1}p_{m}\Pi_{m}(x)\,,\: a\leq x\leq b\label{eq:hist_def}
\end{equation}
Here
\begin{equation}
\Pi_{m}(x)=\Pi^{(h)}(x-mh)
\end{equation}
where
\begin{equation}
\Pi^{(h)}(x)=\begin{cases}
0 , & x \lt 0 \\
1 , & 0 \le x \le h \\
0 , & h \le x
\end{cases}
\end{equation}
is a rectangular functions of width (bin size) $h$ and
\begin{equation}
h=\frac{b-a}{M}
\end{equation}
The normalization condition
\begin{equation}
\mathcal{N}(\vec{p})=\intop_{a}^{b}f\left(x,\vec{p}\right)dx=1\label{eq:norm-cond}
\end{equation}
reduces to
\begin{equation}
\mathcal{N}(\vec{p})=h\sum_{m=0}^{M-1}p_{m}=1\label{eq:norm}
\end{equation}
It is also required that $p_{m}\geq0$ for all $m$ if (\ref{eq:hist_def})
represent a probability density function.
Properties
Note that (\ref{eq:hist_def}) is a smooth function of $p_{m}$ and
the derivatives are
\begin{equation}
\frac{\partial}{\partial p_{m}}f\left(x,\vec{p}\right)=\Pi_{m}(x)\label{eq:hist_deriv}
\end{equation}
This property is used in PDF fitting. Integration of $\Pi_{m}$ with
any function gives its average value over the $m$-th interval:
\begin{equation}
\intop_{a}^{b}\Pi_{m}(x)y(x)dx=\intop_{mh}^{(m+1)h}y(x)dx=h\left\langle \, y\,\right\rangle _{m}\label{eq:avg}
\end{equation}
The $\Pi$ functions are orthogonal:
\begin{equation}
\Pi_{m}(x)\Pi_{k}(x)=\delta_{m,k}\Pi_{m}(x)\label{eq:prod}
\end{equation}
and
\begin{equation}
\intop_{a}^{b}\Pi_{m}(x)\Pi_{k}(x)dx=h\delta_{m,k}\label{eq:ort}
\end{equation}
Generalization
In Eq. (\ref{eq:hist_def}) we can relax the requirement of an equal
width of all$\Pi$-functions. The definition (\ref{eq:Pi-func}) is
replaced with
\begin{equation}
\Pi_{m}(x)=\begin{cases}
0, & x \lt x_{m}\\
1, & x_{m}\leq x \lt x_{m+1}\\
0, & x_{m+1}\leq x
\end{cases}
\end{equation}
Here
\begin{equation}
a=x_{0}\lt x_{1} \lt \cdots \lt x_{M-1}\lt x_{M}=b
\end{equation}
and the widths are
\begin{equation}
h_{m}=x_{m+1}-x_{m}
\end{equation}
The equations (\ref{eq:hist_def}), (\ref{eq:hist_deriv}) and (\ref{eq:prod})
remain unchanged. Eq. (\ref{eq:norm}) reduces to
\begin{equation}
\mathcal{N}(\vec{p})=\sum_{m=0}^{M-1}h_{m\,}p_{m}=1\label{eq:norm-1}
\end{equation}
In Eqs. (\ref{eq:avg}) and (\ref{eq:ort}) $h$ should be replaced
with $h_{m}$ .
Histogram Bin-width Optimization
See the links below.
References
- Histogram. - Wikipedia. Also about bin size selection.
- Density estimation.
- Histogram Bin-width Optimization.
- A Method for Selecting the Bin Size of a Time Histogram.
- A recipe for optimizing a time-histogram.
- Data-Based Choice of Histogram Bin Width.
- Selecting the Number of Bins in a Histogram: A Decision Theoretic Approach.
- Multiresolution Histograms and their Use for Texture Classification.
- A Fast Implementation of Adaptive Histogram Equalization.
- On Selecting The Number Of Bins For A Histogram.
- Dynamic Histograms: Capturing Evolving Data Sets.
- REHIST: Relative Error Histogram Construction Algorithms.
- The problem with Sturges' rule for constructing histograms.
- Maximizing the entropy of histogram bar heights to explore neural activity: a simulation study on auditory and tactile fibers.
© Nikolai Shokhirev, 2012-2025
email: nikolai(dot)shokhirev(at)gmail(dot)com