In this section there are collected several distributions representing various magnitude of statistical parameters (Mean, Variance, Skewness and Kurtosis).
Mean | 0 | |
Variance | ||
Skewness | 0 | |
Kurtosis *) | -6/5 = -1.2 |
*) Here and below Kurtosis = Excess kurtosis.
Mean | (L2 - L1)/3 | |
Variance | (L22 + L2 L1 + L12)/18 | |
Skewness | ||
Kurtosis | -3/5 = -0.6 |
Special cases
L1 = L2 = L/2 | L1 = 0, L2 = L | |
Mean | 0 | L /3 |
Variance | L2 /24 | L2 /18 |
Skewness | 0 | = 0.565685 |
Kurtosis | -0.6 | -0.6 |
Mean | μ | |
Variance | a2 /(2 m - 3) , m > 3/2 | |
Skewness | 0 | |
Kurtosis | 6/(2 m - 5) , m > 5/2 |
Special cases:
Mean | μ | |
Variance | σ2 | |
Skewness | 0 | |
Kurtosis | 0 |
Normal - Pearson5/2 comparison
Comparison of the distributions with Variance = 1:
Red curve -
Pearson5/2, Blue curve - Gaussian.
It hard to see the "fat" Pearson distribution tails, but its sharp peak is definitely noticeable.
Mean | μ + L2 - L1 | |
Variance | L22 + L12 | |
Skewness | 2( L23 - L13)/( L22 + L12)3/2 | |
Kurtosis | 6( L24 + L14)/( L22 + L12)2 |
L1
= 1, L2 = 2
Special Cases:
L1 = 0, L2 = L | L1 = L2 = L /2 | |
Mean | μ + L | μ |
Variance | L2 | 2 L2 |
Skewness | 2 | 0 |
Kurtosis | 6 | 3 |
Mean | 2 L |
x/L2 exp(-x/L) 0 < x < ∞ |
Variance | 2 L2 | |
Skewness | ||
Kurtosis | 3 |
Power-exponential distribution for L = 1
Mean | μ |
μ - s < x < μ + s |
Variance | = s2 0.13069096604865776 |
|
Skewness | 0 | |
Kurtosis | 1.2 (90 - π4)/(π2 - 6)2 = -05937628756 |
s = 1, μ = 0
Mean | 0 |
2 (R2 - x2)1/2/(π R2)
-R < x < R |
Variance | R2/4 | |
Skewness | 0 | |
Kurtosis | -1 |
R = 1
© Nikolai Shokhirev, 2001 - 2025