Numerical experiments, Tips, Tricks and Gotchas
Mathematica absolute precision |
Matlab | Mathematica float |
Python float |
1 | 0.999999999999841 | 1.000000000000009 | 1.00000000 |
2 | 0.999999999997379 | 1.999999999999323 | 2.00000000 |
3 | 3.000000001049189 | 2.999999999984618 | 3.00000000 |
4 | 3.999999967630562 | 4.000000000014978 | 4.00000004 |
5 | 5.000000341909659 | 5.00000003983424 | 4.99999937 |
6 | 5.999999755869895 | 5.999998867455453 | 6.00000798 |
7 | 6.999973481009383 | 7.000015281443138 | 6.99993101 |
8 | 8.000284343435283 | 7.999873221974908 | 8.00039949 |
9 | 8.998394492431256 | 9.00071853610688 | 8.99845889 |
10 | 10.006059681252784 | 9.99708642835949 | 10.00386198 |
11 | 10.984041283443625 | 11.00892080340981 | 10.99484196 |
12 | 12.033449121964885 | 11.98006772341798 | 11.99847940 |
13 | 12.949055715498519 | 13.03569538754464 | 13.02424289 |
14 | 14.065272732694492 | 13.95372538519138 | 13.94558757 |
15 | 14.935355760260174 | 15.04620125219991 | 15.07956153 |
16 | 16.048274533412592 | 15.96503131308764 | 15.92526766 |
17 | 16.971132243131219 | 17.0180265952154 | 17.04459974 |
18 | 18.011221676102622 | 17.99333969776423 | 17.98069544 |
19 | 18.997159990805148 | 19.00144511371462 | 19.00457196 |
20 | 20.000324878101402 | 19.99985435328136 | 19.99949308 |
Neither the roots from Table 1 nor the exact roots (\ref{eq:rk}) give zero if we put them into $W_{20}(x)$.
# | Mathematica absolute precision |
Matlab | Mathematica float |
Python float |
1 | 0 | 0.0000001024 | 160.0 | 1.02400000×103 |
2 | 0 | 0.0000008192 | -6144.0 | 8.19200000×103 |
· · | · · · · · | · · · · · | · · · · · | · · · · · |
19 | 0 | -1.6070033408 | 1.97998×1012 | -1.60700334×1010 |
20 | 0 | -2.7029504000 | 3.84829×1012 | -2.70295040×1010 |
The only exception is Mathematica with absolute precision.
As it was shown above, the polynomial values and its roots are extremely sensitive to the round of errors even if the calculations are performed with double precision.
Let's perform another experiment. If we replace \begin{equation} p_{19}=-210\rightarrow-210-2^{-23} = -\frac{1761607681}{8388608}\label{eq:modif} \end{equation} then the roots become: \begin{eqnarray*} \{\tilde{r}_{k}\} & = & \{1.00000,2.00000,3.00000,4.00000,5.00000,6.00001,6.99971,8.00714,\\ & & 8.91778,10.0953\pm0.642703i,11.7935\pm1.6521i,13.9923\pm2.51879i,\\ & & 16.7307\pm2.81262i,19.5024\pm1.94033i,20.8469\} \end{eqnarray*}The above values are from Mathematica. The other environments give similar results.
The relative change $2^{-23}/210\approx5.7\cdot10^{-10}$ in $p_{19}$ caused large distortion of the roots. A half of them even became complex.
The derivative of a root with respect to $p_{19}$ can be considered as a measure of sensitivity. It can be shown [1] that their values at $r=\{1,2,\ldots,20\}$ are \[ d_{k}=\left.\frac{\partial r}{\partial p_{19}}\right|_{r=k}=\frac{k^{19}}{D_{k}} \] where \[ D_{k}=\prod_{l=1,l\neq k}^{20}(k-l) \] Their numerical values are \begin{eqnarray*} \{d_{k}\} & = & \{-8.22\cdot10^{-18},8.19\cdot10^{-11},-1.64\cdot10^{-6},2.19\cdot10^{-3},-6.08\cdot10^{-1},\\ & & 5.82\cdot10^{1},-2.54\cdot10^{3},5.97\cdot10^{4},-8.39\cdot10^{5},7.59\cdot10^{6},\\ & & -4.64\cdot10^{7},1.99\cdot10^{8},-6.06\cdot10^{8},1.33\cdot10^{9},-2.12\cdot10^{9},\\ & & 2.41\cdot10^{9},-1.90\cdot10^{9},9.96\cdot10^{8},-3.09\cdot10^{8},4.31\cdot10^{7}\} \end{eqnarray*} At the half of roots the absolute values of $d_{k}$ exceed $10^{7}$. This explains such big distortions of the roots.Fig. 1. Wilkinson's polynomial.
The ordinate is $y=sign(p)\left[log_{10}(1+p)\right]$ because of large variation of the polynomial ($\pm10^{15}$ in magnitude). However, this transformation preserve a linear scale near $p = 0$.
The polynomial function is so steep in the vicinity of roots then even small round-off errors cause large deviation from zero. A relatively small variation in the coefficient $p_{19}$ also causes a large distortions of the roots. The plot of the modified polynomial is presented in Fig. 2.
Fig. 2. Modified polynomial.
The polynomial $W_{20}(x)$ can be considered as an exact fit of the function $f(x) \equiv 0$ at the points (\ref{eq:rk}). The plot in Fig. 1 shows that this is the extreme case of overfitting.
Below are scripts in Mathematica, Matlab and Python implementing the experiments. The IPython HTML notebook was converted to HTML and can be viewed at the link below.
For more details:
© Nikolai Shokhirev, 2012-2025
email: nikolai(dot)shokhirev(at)gmail(dot)com